Chapter 2 Additional Readings

A Verification of the Central Limit Theorem

Central Limit Theorem: If {Xy, X, ...} is a set of independent and identically distributed random
variables with mean x and standard deviation o, then the distribution function for the random
variable

X —
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approaches the distribution function for the standard normal distribution as n — oo, where the
sample mean random variable is defined as X = %X‘

Proof: We start by proving that the moment generating function (defined shortly) of the random
variable Z,, approaches the moment generating function of the standard normal random variable
Z as n approaches infinity. The point is that the moment generating function of a random
variable uniquely determines the distribution function of the random variable, although we will
not prove this fact. Some details in this prove will not be completely rigorous, since a rigorous
proof is beyond the level of this text.

The moment generating function My (t) of a random variable X is defined to be the
expectation of the random variable e*t: My (t) = E[eX'], where t can be any real number. Since
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is the density function for the standard normal random variable Z, then moment generating
function of Z is:
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(1) M,(t) = E[e?t] = \/%ffooo e’ /2g7t g7,

Completing the square, we have
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Substituting the right side of equation (2) into the right side of equation (1) yields
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Making the change of variables u = z — t results in

3) My(t) = - et®/2 [7 e/ 2du = ot*12
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To obtain the final expression on the right side of equation (3), we used the fact that
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since e™%*/2/\/21 is the density function for the standard normal random variable. We have left
to show that M (t) - et“/2 asn — oo. We can express

X YLK
o/\n ovn

Thus, the moment generating function for Z, is:
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Since the X;'s are independent random variables, then Z,, has the density function
p(x)p(xy) - p(x,)Where p(x;) is the density function for the random variable X;. Referring to
equation (4), we can express the moment generating function in the form
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From Taylor series, we know that e* =1 + x + %xz + %xz + %xz + ---. Hence, for each
i=1,2,..,n, we have:
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Since p(x;) is the density function for a random variable with mean p and variance o2, then we
know

@) [opG) dxg = 1, [ xip(x) dx; = pand [7 (i = w)°p(x) dxg = 0>,
Although we don’t know the precise values of the following integrals, we can say that
®) J5 0 = w¥p(e) dx; = C(k)

for some constants C (k) that are independent of n for k=3, 4, ... Based on equations (7) and (8),
we rewrite equation (6) in the form:
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Notice that the right side of equation (9) is the same for every i. Substituting the right side of
equation (9) into equation (5) yields
t2  c3)t: c@tt
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Since
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is much smaller than Soasn — o, then
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asn — oo. We know from calculus that
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as n — oo. Choosing a=t%/2, this shows that
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M, (t) > e2

as n — oo as we set out to verify.



