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Doob Decomposition 

 Martingale processes and deterministic processes are normally much easier to analyze 

and manipulate than other stochastic processes containing both drift and random elements. One 

major reason for this is that working with martingales free us from having to calculate unknown 

risk-adjusted discount rates and risk premiums in the valuation process. Two types of procedures 

to convert drift processes to martingales involve either decoupling the drift from the random 

process and its associated martingale or changing the probability measure. Doob's 

Decomposition Theorem states that every discrete sub- and super-martingale St can be 

decomposed into the sum of a martingale Mt and a predictable drift process t; that is, St = Mt + 

t.  

 We start by demonstrating the construction extending from time t-1 to t. Express St = St – 

St-1 + St-1. The drift in the process from time t-1 to t equals E[St|   t-1] - St-1. The remaining 

change in the process from time t-1 to t will be the martingale contribution: (St – St-1) - (E[St|   t-

1] - St-1) = St - E[St|   t-1]. Observe that the martingale contribution is a measure of the volatility 

(variation) of the security from its mean at time t conditioned on its price at time t-1. We have: 

                                              

                                
 

Next, repeat the same decomposition on the term St-1 extending from time t-2 to t-1. Continue 

this procedure back to time 0. This process results in: 

                                          
 
   

 
     

         Define Mt and t as follows: 

                   

 

   

    

and 


 

                    

 

   

 

 

Then St = Mt + t. It is clear that t is a predictable process in the sense that it is determined at 

time t -1 and is measurable with respect to the filtration       It is easy to show that Mt is a 

martingale. First note that 

                     
   
      . 
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It follows that Mt = St – E[St| t-1] + Mt-1. Next, we calculate the conditional expectation: 

                                      

                                 

which shows that Mt is a martingale.  

 The Doob-Meyer decomposition applies similar principles to continuous-time processes, 

decomposing each such a process into a martingale and a predictable drift process. Since Doob-

Meyer decompositions are used only infrequently in finance, we will not discuss them here. 

Illustration: Doob Decomposition 

            Consider a binomial submartingale process (binomial process with positive drift) St in 

which, during any interval t-1 to t, the value of S increases by 1 with probability p and decreases 

by 1 with probability (1-p), with .5 < p < 1. Also, assume that the change St – St-1 at time t is 

independent of the change Ss – Ss-1 at any time ts. To find the Doob Decomposition for this 

process, it is useful to express the change Zi =Si – Si-1. Thus, the random variables Z1, Z2,…,Zt are 

independent of one another. We can express: 

                                      

                     

 

   

 

   

 

Since Zi = Si – Si-1, then Si = Zi + Si-1. Thus,  

                                                                  

 The martingale contribution to the process from time i-1 to i is:  

                                             

The predictable contribution from time i-1 to i is: 

                                     

 

Thus, the martingale Mt will be 

                                  
 
   

 
     

The predictable process t will be 
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
 

                

 

   

  

 Observe that t is exactly the drift upward of the security. Since the drift upward after 

each unit of time is 2p-1, the cumulative net drift by time t will be t(2p-1). Also, observe that the 

change in the process from time t to t+1, ΔSt = St+1-St, satisfies ΔSt = ΔMt + Δt, where ΔMt = Zi-

(2p-1) and Δt = 2p-1. Thus, ΔMt is the volatility of the process over a unit change in time, and 

Δt = 2p-1 is the drift of the process per unit change in time. We will study continuous processes 

for securities with the same perspective. For example, we will express the change in the value of 

a security over a time increment dt from t to t+dt in the form dSt = σtdZt + μtdt, where Zt is 

standard Brownian motion. Analogous to the Doob Decomposition, the term σtdZt will be the 

volatility factor and μtdt will be the drift factor.    

Verification of the Itô Isometry 

 If ft is a square integrable stochastic process, then 

         

 

 

 

 

       
    

 

 

 

Proof: First we have 

         

 

 

 

 

           

 

 

 

 

   
   

since every stochastic process is known at time 0. Next, we approximate the integral by a sum: 

      

 

 

     

   

   

    
 

where     
      

    
  We calculate the required expectation: 

         

 

 

 

 

   
          

   

   

    
      

   

   

    
    

   

       

   

   
    

    
           

   

   
    

    
           

      
 

 
   

  

   

   

  

The last line above follows from the distributive property for multiplication and addition along 

with the property that the expectation of a sum is the sum of the expectations. 
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 By the Tower Property (See Section 5.5), we have  

     
   

    
    

            
   

    
    

    
       

If we compute an expectation conditioned on    
 and j > k, then    

   
    

 is determined since 

all information is known up to time tj. Only     
      

    
 is a non-deterministic random 

variable. This implies that 

     
   

    
    

    
     

   
    

      
    

     
   

     

where we also used the fact that the expectation of     
      

    
 at time tj equals 0. Now, 

we see that  

     
   

    
    

       

whenever j > k. By the same argument, we have  

     
   

    
    

       

whenever j < k. Putting the results of these two equations into the last line of our integral above 

yields: 
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 In Section 6.4.2.1, we showed that      
        The Itô Isometry now follows since: 

      

    
        

  |          

    
                

    
            

  
 

 
    

Note that the second to last expression in the above equation is simply a Riemann sum for 

approximating the integral of the real-valued function     
  , which is the last expression. We 

point out that in the limit as n→∞, the approximations become equalities. 


