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Chapter 8 Additional Reading  

 

 

I. Deriving the PDE Solution for Pricing a Long-Term Bond 

          Assume that the instantaneous interest rate rt follows any stochastic differential given by 

equation (8.5). We showed in this case that the bond price B(t,T) satisfied the partial differential 

equation (8.15). For convenience, further assume that the price of the bond at maturity is 1 unit, 

creating the boundary condition B(T,T) = 1. Our goal is to solve for the price B(t,T) at any time t 

≤ T. First, we prove that the solution takes the form: 
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for t ≤ T. To prove this result, define the function 
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 Now, use Itô’s Lemma to calculate the differential of F(x) = B(x,T) f(x): 
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Note that higher-order partial derivatives of F with respect to B and f are equal to zero. For 

convenience, define  

 

            
 

 
           

 

 

 

 

            

 

 

  

 

so that f(τ) = e
g(τ)

. By another application of Ito’s Lemma, we have: 
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 To calculate dBdf, only the term  
  

  
    is needed from equation (8.6) to approximate 

dB, and only the term        is needed from equation (4) to approximate df. All of the other 

terms are negligible in order to estimate dBdf, since their effect on dBdf will be small compared 

to dτ. By equations (8.6) and (4), we have 
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Substituting equations (8.6), (4), and (5) into equation (3) and simplifying gives 

 

     
  

  
       

  

  
 

  

 

   

   
                

  

  
     

 

However, as we showed earlier (equation 8.15) the expression inside the square brackets equals 

zero. Thus the differential dF simplifies to: 

 

             
  

  
     

 

Integrating this equation in the variable τ from t to T and taking the expectation with respect to 

the filtration    at time t, we have: 
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We see by equation (6.1) that the right side of equation (6) equals 0. Observe that F(t) = B(t, T) 

and that B(t, T) is a determined function with respect to the filtration   . Thus,             

      . Referring to equation (2), we see that the expression             is precisely the right-

hand side of equation (1), and so we have derived equation (1). 

 

The Closed Form Solution for the Vasicek Bond Price with constant risk premium Θ 

In this case, equation (1) becomes 
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By replacing the time variable t with s, and replacing r0 with rt so that time t is regarded as the 

current time, the solution for rs for t ≤ s ≤ T in equation (8.1) can be expressed as  

 

          
        

   

 

     

 

where  

 

                    

 

is a deterministic function for any s ≥ t and              Note that    is standard Brownian 

motion in the variable u. In order to evaluate the expectation in equation (7), we need to find a 

different way to express the process       
 

 
      

 

 
  Observe that  
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 Interchanging the order of integration in the double integral gives 

 

     

 

 

      

 

 

      
          

 

   

   

 

     

 

      

 

 

  
  

 

   

 

                   

Observe that 

 

     

 

 

       

   

 

  

 

Thus 

 

      

 

 

      

 

 

       

 

 

   
  

 

   

 

                      

 

 Since μs is a deterministic function, then the function       
 

 
 is deterministic, and by 

the theorem in Section 6.1.5.3 the function    
  

 

   

 
                     has a normal 

distribution with expectation taken at time t (which corresponds to time 0 for    ) equal to zero. 

Thus       
 

 
      

 

 
 is a random variable with a normal distribution and expectation at 

time t: 
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Its variance with respect to the filtration    is: 

 

           

 

 

      

 

 

            
  

 

   

 

                     
       

 

By the Ito Isometry,  

 

           

 

 

         

 

 

    
  

 
                 

   

 

   

 

 Evaluating the integral above is a straightforward calculation. First expand the quadratic 

integrand. Next, integrate term by term. After some algebraic manipulation, the resulting 

variance can be expressed as: 

 

 

 
              

    

 
 

  
 

  
           

    

 
 

  
 

  
  

  
 

   
            

 
  

 

By equation (2.26), and after some algebraic manipulation, the price of the bond is: 
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(8)            
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II. Additional Applications for Mean Reverting Processes 

 

 As we discussed earlier, mean reverting processes such as Ornstein-Uhlenbeck have a 

wide range of applications in finance. Among them, in addition to bond pricing and yield curve 

mechanics are stochastic volatility models, exchange rate and commodity price modeling and 

arbitrage portfolio dynamics. In each of these scenarios, the rate, return or value has a long-term 

mean or normal rate, to which randomly fluctuating short-term values tend to revert.  

 We have already discussed a small number of powerful applications for mean-reverting 

processes. No new pricing models will be derived in this section. Instead, this section merely 

seeks to introduce substantially different applications for mean reverting processes in 

quantitative finance. These applications are further developed in sources discussed later in this 

chapter. First, we will focus on the evolution of pairs trading arbitrage portfolio values as a 

simple example of an application of Ornstein-Uhlenbeck processes, one that is very different 

from the bond pricing examples above. 

Illustration: Pairs Trading and the Ornstein-Uhlenbeck Process 

 In this illustration, we consider the application of the Ornstein-Uhlenbeck process to 

arbitrage portfolio values, which, in a perfectly efficient market, should always be zero. 

However, realistically, arbitrage portfolio values do frequently drift away from zero for at least 

short periods, creating what portfolio managers call basis risk. Basis risk is the risk that markets 

might move too slowly to profit from an apparent arbitrage, or that markets might move opposite 

to the arbitrageur’s expectations, at least in the short run. 

 Pairs trading is a strategy intended to exploit short-term deviations from a long-run 

equilibrium pricing relationship between two securities. As with other arbitrage strategies, pairs 

trading involves the simultaneous purchase and sale of similar securities. Pairs trading typically 

involves taking offsetting positions two different stocks (perhaps options or index contracts) with 

strong returns correlations, one long and one short such that gains in one position are expected to 

more than offset losses in the other position. For example, one might purchase GM stock when it 

seems underpriced relative to Ford stock, which might be shorted. If the Canadian and U.S. 

currencies are expected to exhibit strong positive correlations over the long run, pairs trades 

might buy one currency when it devalues against the other that is simultaneously shorted. While 
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these types of hedges are rarely perfect, diverse portfolios of pairs can be comprised. Sufficiently 

large and diverse portfolios of pairs can mitigate the risks of the overall portfolio of pairs. 

Sometimes this type of portfolio composition is referred to as a type of statistical arbitrage, 

more broadly defined as short-term mean-reversion strategies involving large numbers of 

securities and very short holding periods (paraphrased from Lo [2010]). 

Illustration: Berkshire-Hathaway Class A and B Shares 

 Consider a situation where a company, Berkshire Hathaway, has two different classes of 

shares trading in the market. As of December, 2011, Class A shares had a claim on Berkshire-

Hathaway dividends that was 1,500 times higher than those of Class B shares. A very simple 

model might predict that Class A shares would sell at a price that is 1,500 times as high as the 

price of Class B shares. However, voting rights for Class A shares are 10,000 times as high as for 

Class B shares. These voting rights differentials and transactions costs might lead the two classes 

of shares to differ from the 1,500 to 1 ratio, at least for short periods of time. Nevertheless, we 

might expect that, at least in general, these two classes of shares experience similar proportional 

changes in price. Based on dividends alone, as long as voting rights are insignificant (it is 

reasonable to surmise that Warren Buffet probably has the bulk of the influence in Berkshire-

Hathaway corporate elections), the 1,500 to 1 ratio should be a good approximation for the price 

differential. 

 One simple pairs trading strategy might involve taking a long position in Class A shares 

of Berkshire-Hathaway stock along with a short position in 1,500 times as many Class B shares 

when the Class A shares seem undervalued relative to the Class B shares. Pairs trading is 

essentially an arbitrage strategy anticipating that the deviation of a recent pricing relation 

between two securities is only temporary. Pairs traders typically focus either on the ratio between 

prices of two securities or the difference between their prices. When differences do arise, or 

when price ratios deviate from their norms, they sometimes take time to resolve. That is, notice 

on Table 1 the tendency for differences to tend to resolve to their mean value. Larger differences 

tend to take more time to revert to their means. 

 B-Adj        B-Adj   

Date           A-Adj Close Close Diff.   Date        A-Adj. Close Close Diff. 

1/3/2012  117925 78.37 370       5/1/2009   91600 59.44 2440 

12/1/2011  114755 76.3 305      4/1/2009   94000 61.3 2050 

11/1/2011  118500 78.76 360      3/2/2009   86700 56.4 2100 

10/3/2011  116950 77.86 160      2/2/2009   78600 51.28 1680 

9/1/2011  106800 71.04 240      1/2/2009   89502 59.78 -168 

8/1/2011  109769 73 269      12/1/2008   96600 64.28 180 

7/1/2011  111500 74.17 245      11/3/2008  104000 69.98 -970 
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6/1/2011  116105 77.39 20      10/1/2008  115490 76.8 290 

5/2/2011  118775 79.07 170      9/2/2008  130600 87.9 -1250 

4/1/2011  124750 83.3 -200      8/1/2008  116600 78.04 -460 

3/1/2011  125300 83.63 -145     7/1/2008  114450 76.58 -420 

2/1/2011  131300 87.28 380       6/2/2008  120750 80.24 390 

1/3/2011  122425 81.75 -200     5/1/2008  134650 89.96 -290 

12/1/2010  120450 80.11 285      4/1/2008  133850 89.14 140 

11/1/2010  120200 79.68 680       3/3/2008  133400 89.46 -790 

10/1/2010  119300 79.56 -40      2/1/2008  140000 93.49 -235 

9/1/2010  124500 82.68 480       1/2/2008  136000 91 -500 

8/2/2010  118675 78.78 505       12/3/2007  141600 94.72 -480 

7/1/2010  117000 78.12 -180     11/1/2007  140100 93.8 -600 

6/1/2010  120000 79.69 465       10/1/2007  132500 88.28 80 

5/3/2010  105910 70.55 85        9/4/2007  118510 79.04 -50 

4/1/2010  115325 77 -175      8/1/2007  118390 77.8 1690 

3/1/2010  121800 81.27 -105      7/2/2007  110000 72.08 1880 

2/1/2010  119800 80.13 -395     6/1/2007  109475 72.1 1325 

1/4/2010  114600 76.43 -45       5/1/2007  109490 72.5 740 

12/1/2009  99200 65.72 620       4/2/2007  109200 72.56 360 

11/2/2009  100600 67.06 10       3/1/2007  108990 72.8 -210 

10/1/2009  99000 65.66 510     2/1/2007  106190 70.46 500 

9/1/2009  101000 66.46 1310   1/3/2007  110050 73.35 25 

8/3/2009  100850 65.72 2270         = 367.31 

7/1/2009  97000 63.61 1585       

6/1/2009  90000 57.92 3120 

Table 1: Berkshire-Hathaway A and B Share Prices and Differences 

            Table 1 lists beginning-of-month prices of Class A and B shares of Berkshire Hathaway 

stock for the 5-year period from year-end 2006 to January 2012. Split-adjusted closing prices are 

given for the first trading day of each month for both Class A and B shares. Based on dividend 

claims, each A share should sell for 1,500 times the B share price. The premium or difference 

between the A share prices and B share prices are given as Diff = (A-Adj. Close) - (1,500 B-Adj. 

Close). Thus, for example, on January 3, 2012, the adjusted closing price for A shares was 
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$117,925 and for B shares was $78.37. The difference between the A-shares price and B-shares 

price times 1,500 was Diff = $117,925 - (1,500  $78.37) = $370. This means that a single A-

share was worth $370 more than 1,500 B-shares. This difference had changed by 65 from 

December 1, 2011, when the difference was $305.  

 The mean difference over the five-year period was  = $367.31. While, in a perfectly 

efficient market, one might expect for the mean difference to be zero for such an arbitrage 

portfolio, there may well be good reasons for the difference to tend to be positive. For example, 

the votes on the A-shares might justify the $367.31 average difference. Perhaps transactions 

costs might justify this difference. Regardless, this difference implies that the A shares tend to 

trade at a long-term mean premium of $367.31 over a portfolio of 1,500 B shares. We might 

anticipate that deviations from this long-run pairs relationship will tend to revert back to the 

mean. Figure 1 does seem to suggest that this pairs relationship does vary over time, but does 

tend to revert back to its mean. 

 

 

Figure 1: Arbitrage Portfolio Values over Time (t=0 is January 2007; t = 61 is January, 2012) 

            As we mentioned earlier, there are a variety of techniques for estimating pullback factors 

for pairs trading. The OLS regression and maximum likelihood methods are fairly 

straightforward statistical approaches, but are subject to a number of biases. Autoregressive (e.g., 

AR(1)) models are also used, but discussions of all of these techniques are beyond the scope of 

this book (See Yu [2009] for more discussion on calibration techniques). We might apply the 

ordinary least squares regression procedure to calibrate the Ornstein-Uhlenbeck-based pairs-

trading model to estimate this difference: 
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We obtained a long term mean of                      a pullback factor value of λ=.297 and a 

standard deviation σDiff = 883.4 so that: 

                                        

This model is intended to merely hint at an estimation technique, though, again, Yu [2009] can 

provide more input on this and other calibration procedures. This solution predicts that, the 

process will tend towards reverting back to its mean of                     If a horizontal line at the 

Diff value of 367.41 is drawn in Figure 6, we see that Difft values tend to fluctuate randomly 

about the mean value. Even a large jolt that pushes the pairs return far away from the mean is 

followed by a reversion back to the mean.  

Illustration: Stochastic Volatility 

One of the key assumptions of the Black-Scholes options pricing model is that the 

underlying security volatility is constant over the life of the option. However, volatility is 

unobservable, yet it is clear to every derivatives trader that stock variances are not constant over 

time (e.g., the volatility clustering observed by Mandelbrot [1963]). In addition, variances are 

estimated with error (see, for example, (Muirhead [1987]), option pricing model valuations 

might be enhanced with the introduction of stochastic volatility parameters (e.g., Heston [1993]) 

and stochastic volatility models might help resolve empirical biases and anomalies such as the 

“smile effect” discussed in Chapter 7 (e.g., see Rubinstein [1985]). Stochastic volatility option 

pricing models include mean reversion and other time-varying processes for volatility, including 

Hull and White [1987], Stein and Stein [1991] and the square root process (similar to that in 

Cox, Ingersoll and Ross) of Heston [1993]. Heston's model takes the following form: 

   

  
              

   
       

    
             , 

where    
  is the long-term mean variance, α is a constant and λ is the rate of reversion of the 

short-term variance   
  to the long-term mean. The term   is the volatility of the volatility. In the 

equation below, ρ denotes the correlation coefficient between ZS,t and Zσ,t. Denote the short term 

time-varying variance with v(t) =   
 . Heston uses the standard no-arbitrage argument to derive a 

multivariate partial differential equation for valuing an asset with price P under the two sources 

of risk: 
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Heston offers a plausibility argument for choosing a risk premium parameter v to be 

proportional to the short term variance. To price a European call, the boundary conditions are 

difficult to deal with directly. So, Heston expresses the call in the form: 
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where X is the exercise price of the call. The functions P1 and P2 both satisfy the partial 

differential equation above, and have simple boundary conditions. The solutions for P1 and P2 

are obtained in integral form, and thus an integral representation is obtained for the solution. 

These integrals cannot be evaluated in closed form, but can be approximated numerically. While 

we invite the reader to explore the full derivation and computational techniques of Heston 

[1993], it is beyond the scope of this text to do so here. 

 There are a variety of factors that can lead to stochastic volatility for equities, including 

time-varying levels of uncertainty in the economy, uncertainty regarding corporate 

announcements, company leverage and institutional leverage affecting trading as equity prices 

decline. As we discussed earlier, these stochastic volatility models can be used for instruments 

related to FX, commodities and inflation rare-related instruments, etc. For example, as with 

interest rate securities, central bank rate management can lead to mean reverting volatilities as 

governments intervene in FX markets to stabilize rates. 
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